4,234 research outputs found

    Limitations of the Millennium Development Goals: a literature review

    Get PDF
    With the Millennium Development Goals (MDGs) showing uneven progress, this review identifies possible limitations arising from the MDG framework itself rather than extrinsic issues. A multidisciplinary literature review was conducted with a focus on limitations in the formulation of the MDGs, their structure, content and implementation. Of 1837 MDG-related articles, 90 met criteria for analysis. Articles describe MDGs as being created by only a few stakeholders without adequate involvement by developing countries and overlooking development objectives previously agreed upon. Others claim MDGs are unachievable and simplistic, not adapted to national needs, do not specify accountable parties and reinforce vertical interventions. While MDGs have promoted increased health and well-being in many countries by recognising and deliberating on the possible constraints of the MDG framework, the post-2015 agenda may have even greater impact. Complex problems have simple, easy to understand, wrong answers (Henry Louis Mencken

    Neutron radiography for visualization of liquid metal processes: Bubbly flow for CO2 free production of Hydrogen and solidification processes in em field

    Get PDF
    The paper describes the results of two experimental investigations aimed to extend the abilities of a neutron radiography to visualize two-phase processes in the electromagnetically (EM) driven melt flow. In the first experiment the Argon bubbly flow in the molten Gallium - a simulation of the CO2 free production of Hydrogen process - was investigated and visualized. Abilities of EM stirring for control on the bubbles residence time in the melt were tested. The second experiment was directed to visualization of a solidification front formation under the influence of EM field. On the basis of the neutron shadow pictures the form of growing ingot, influenced by turbulent flows, was considered. In the both cases rotating permanent magnets were agitating the melt flow. The experimental results have shown that the neutron radiography can be successfully employed for obtaining the visual information about the described processes.LIMTEC

    Vascular Changes Following Exercise-Induced Hyperthermia

    Get PDF
    Please view abstract in the attached PDF file

    Simultaneous observation of high order multiple quantum coherences at ultralow magnetic fields

    Full text link
    We present a method for the simultaneous observation of heteronuclear multi-quantum coherences (up to the 3rd order), which give an additional degree of freedom for ultralow magnetic field (ULF) MR experiments, where the chemical shift is negligible. The nonequilibrium spin state is generated by Signal Amplification By Reversible Exchange (SABRE) and detected at ULF with SQUID-based NMR. We compare the results obtained by the heteronuclei Correlated SpectroscopY (COSY) with a Flip Angle FOurier Series (FAFOS) method. COSY allows a quantitative analysis of homo- and heteronuclei quantum coherences

    A new technique for the reconstruction, validation, and simulation of hits in the CMS Pixel Detector

    Get PDF
    This note describes new techniques for the reconstruction/validation and the simulation of pixel hits. The techniques are based upon the use of pre-computed projected cluster shapes or ``templates''. A detailed simulation called Pixelav that has successfully described the profiles of clusters measured in beam tests of radiation-damaged sensors is used to generate the templates. Although the reconstruction technique was originally developed to optimally estimate the coordinates of hits after the detector became radiation damaged, it also has superior performance before irradiation. The technique requires a priori knowledge of the track angle which makes it suitable for the second in a two-pass reconstruction algorithm. However, the same modest angle sensitivity allows the algorithm to determine if the sizes and shapes of the cluster projections are consistent with the input angles. This information may be useful in suppressing spurious hits caused by secondary particles and in validating seeds used in track finding. The seed validation is currently under study but has the potential to significantly increase the speed of track finding in the offline reconstruction. Finally, a new procedure that uses the templates to re-weight clusters generated by the CMSSW simulation is described. The first tests of this technique are encouraging and when fully implemented, the technique will enable the fast simulation of pixel hits that have the characteristics of the much more CPU-intensive Pixelav hits. In particular, it may be the only practical technique available to simulate hits from a radiation damaged detector in CMSSW

    Mathematical modeling of drug-induced receptor internalization in the HER2-positive SKBR3 breast cancer cell-line

    Get PDF
    About 20% of breast cancer tumors over-express the HER2 receptor. Trastuzumab, an approved drug to treat this type of breast cancer, is a monoclonal antibody directly binding at the HER2 receptor and ultimately inhibiting cancer cell growth. The goal of our study was to understand the early impact of trastuzumab on HER2 internalization and recycling in the HER2-overexpressing breast cancer cell line SKBR3. To this end, fluorescence microscopy, monitoring the amount of HER2 expression in the plasma membrane, was combined with mathematical modeling to derive the flux of HER2 receptors from and to the membrane. We constructed a dynamic multi-compartment model based on ordinary differential equations. To account for cancer cell heterogeneity, a first, dynamic model was expanded to a second model including two distinct cell phenotypes, with implications for different conformational states of HER2, i.e. monomeric or homodimeric. Our mathematical model shows that the hypothesis of fast constitutive HER2 recycling back to the plasma membrane does not match the experimental data. It conclusively describes the experimental observation that trastuzumab induces sustained receptor internalization in cells with membrane ruffles. It is also concluded that for rare, non-ruffled (flat) cells, HER2 internalization occurs three orders of magnitude slower than for the bulk, ruffled cell population. © 2019, The Author(s)

    Pattern Views: Concept and Tooling for Interconnected Pattern Languages

    Full text link
    Patterns describe proven solutions for recurring problems. Typically, patterns in a particular domain are interrelated and organized in pattern languages. As real-world problems often require patterns of multiple domains, different pattern languages have to be considered to address these problems. However, cross-domain knowledge about how patterns of different languages relate to each other is either hidden in individual pattern descriptions or not documented at all. This makes it difficult to identify relevant patterns across pattern languages. Therefore, we introduce a concept and tooling that enables to capture patterns and their relations across pattern languages for a particular problem context

    A comparison framework and review of service brokerage solutions for cloud architectures

    Get PDF
    Cloud service brokerage has been identified as a key concern for future cloud technology development and research. We compare service brokerage solutions. A range of specific concerns like architecture, programming and quality will be looked at. We apply a 2-pronged classification and comparison framework.We will identify challenges and wider research objectives based on an identification of cloud broker architecture concerns and technical requirements for service brokerage solutions. We will discuss complex cloud architecture concerns such as commoditisation and federation of integrated, vertical cloud stacks

    Orthogonal variability modeling to support multi-cloud application configuration

    Get PDF
    Cloud service providers benefit from a vast majority of customers due to variability and making profit from commonalities between the cloud services that they provide. Recently, application configuration dimensions has been increased dramatically due to multi-tenant, multi-device and multi-cloud paradigm. This challenges the configuration and customization of cloud-based software that are typically offered as a service due to the intrinsic variability. In this paper, we present a model-driven approach based on variability models originating from the software product line community to handle such multi-dimensional variability in the cloud. We exploit orthogonal variability models to systematically manage and create tenant-specific configuration and customizations. We also demonstrate how such variability models can be utilized to take into account the already deployed application parts to enable harmonized deployments for new tenants in a multi-cloud setting. The approach considers application functional and non-functional requirements to provide a set of valid multi-cloud configurations. We illustrate our approach through a case study

    The deal.II Library, Version 9.1

    Get PDF
    This paper provides an overview of the new features of the finite element library deal.II, version 9.1
    • 

    corecore